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The problem of determining the contours of a finite number of holes of equal 
strength in a statically loaded plane under the condition that the given normal 
stresses on the outline of each hole take on constant but distinct values is con - 
sidered, The problem is converted by a method analogous to that used for the 
case of an identical load on the whole domain boundary [l], into a regular in- 
tegral equation which is solved effectively on an electronic computer, while a 
closed solution is obtained for certain cases. A plane with one hole under an 
arbitrary load is also considered. Numerical examples are given. An assertion 
formulated in [Z] about the property of greatest strength of contours of equal 
strength is proved. 

Let S denote the plane of the complex variable z under consideration which 
has n holes. Let the function o,, (5) = cc f 0 (5) map the canonical domain F 
of the variable c conformally on S with the infinitely remote points in correspon - 
dence; 0 (5) is holomorphic in F and bounded at infinity. A plane with n circular 
holes is selected as P (with n parallel slits in [Z]),The boundary conditions of the 
first boundary value problem in the transformed domain become 

a, + cre = 4 Re (@ (E)) (1) 

a,:+ 2izy.r = 
2(E 

a@ - 
- Uk)2 - 
- fwo (%I w (%I + 001 (%I y (%)I; 12) 

rk2w3’ (4) 
CesLL,, k==l, . . ..n 

where or, 
point ok 

oe, rro are stress component in a polar coordinate system with pole at the 
, which is the center of the circle Lk of radius rk; CJT and ‘&a are given. 

The functions CD (I;) and\V (c)which are holomorphic in F have the following asymp- 
totic at in~~ty 

@ (5) = b + 0 (C2), b = ‘14 (ox” + o.!,~) 

u’(C) = U + 0 (5-‘), a = ‘Is (oUco - o%bJ) + iZ m 

(cr3em, or?, 70~ is a given uniform stress field ) _ 
The following theorem is formulated without proof in [Z]:foro, 1 p *I ~onst 

the stress oa = 4b - p is a minimum on the contours of equal strength as compared 
with the maximum quantity aa on any other hole contours. 

The proof results from the following assertion. 
If a real function u (r) which is not a constant and is harmonic in a plane 

with a finite number of arbitrary smooth holes, tends to a definite limit A at infinity, 
then the inequality 

min (u (@> < A < max (u (t)), E EL (3) 
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is valid on the hole boundary L 
Indeed, let the left side df (3 ) , say, not be satisfied, i. e. u (5) > A for all 

E F L. Then by the property of the extremum of harmonic funCtiOnS u (5) > A 

at all points of the domain. in particular, on a circle y of sufficiently large radius 
R which contains all the holes. By the theorem of the mean applied to n (5) in the 

exterior of y, we have 
A = & \ U (5) as 

L . 
Y 

In combination with the inequality U (E) > A we obtain u (5) = A on yfrom 
which it follows that u (5) = A outside y, meaning everywhere in the domain, 

which is a contradiction. Analogously for the right side in (3 ). Applying the assertion 
proved to the function Re @ (<), we obtain from (1) for o7 = P ’ 

min (oe (E)) + p < 4b < max (00 (Q) + P, E E L 

from which it follows that either max 1 (TO (E) 1 > oxrn + G~,~ - p o CD (c)is constant 

inFIn this latter case the contours are of equal strengthoa (g)= 0%” -I- o?,- - pon L. 
The property mentioned of the greatest strength of equal strength contours holds 

for n = 1 even in the case of an arbitrary static load G = (J, (8, %n = %a (8, 

as follows from the relationship (1)) integrated with respect to 0 ( 
2x 

s 
(G + % I dB = 2X (ox” + 0;) 

0 

Hence we have 

Equality is achieved at each point only on a contour of equal strength. 
To find the contour shape, let us set a, = 0, r, = ‘l and let us rewrite (2) 

in the form 

Following [3], we use the boundary condition (4) on a circle to solve the direct problem, 
the determination of UP (E) by means of a given oO (5) by reducing it to a degenerate 
singular equation, and then to an infinite algebraic system 

am+2 - jO (m - k + I)C,-fi+,ok - (m + 1) i T;m+kci(Lk = A,, 
k=l 

m=0,1,2,... 

where {A} and (C)are known but {u} are unknown coefficients of the expansions 

a-k = ak 
(5) 

(6) 

(7) 
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If the coefficients interchange roles, we obtain an algebraicsystem to deter - 
mine o (5) for an appropriate renumbering. 

Let us examine an example. Let the load oxbD = ourn = ?’ = % = 09 6 
= 1 - Cos 2% be given, then 00 = -1 on the contour of equal strength. Hence 

a,==u+ = -1 in their expansion (5 ) . The remaining ak are zero and the mat- 

rix of the system becomes tridiagonal 

4c, - 5c, = -i 

(2k - VC21r_1 - 4 (2k + i)CBk+l + (2k + 5)C,~+s = 0 

The system was solved numerically. The order was chosen equal to 1000. The 
shape of the contour of equal strength (a) and the shape of the load (b ) are presented 

in Fig. 1. 

0 0.5 1 I 

Fig. 1 C? 

Let us turn to a multiply connected domain. Considering (1) in the case of a 

load variable in E as a Dirichlet problem with respect to the real part of the function 
@ (5) - 4b holomorphic in F I which decreases at infinity, we conclude that for 

given 0, and b the stresses Q (E) should satisfy known orthogonality conditions (4). 
In particular, the problem is solvable if (~0 (E) takes on constant but generally dif - 
ferent values on each contour L, (modified Dirichlet problem [4] ). We shall also 

call the appropriate contours of equal strength. Whether they exist or not depends on 

the solvability of the one-sided boundary value problems (2) with the condition con - 

taning the derivatives 

(8) 

h, = ‘/z (06 ;- (-5 + 2,kl) 

Condition (8) simplifies in a case of practical importance and the problem is 

solved completely. Namely, let 

6 (E) = Pk, ‘G: (E) = 0, E E L,, k = 1, 2; . . . . n 

Then 08 (E) = 0~~ f ovrn - pk should hold on the contours of equal strength, hence 
a’ (5) = 0 in F and (8 ) becomes -, 

H’ (E) + h, $- cd (E) = CA, &-- - Ca 
k 

H’ (5) = 0’ (5) 0’ (5) - 4, bc = ‘1s (00 - pr) 
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Let us assume that all the 3ik are not zero ; I$’ (5) and w’ (5) belong to a class p 
of functions holomorphic in F and continuous to L. If the additional condition that 
they are derivatives of functions from P is discarded, then (9) is a particular case of 
the problem studied [5] for a finite fn + 1) -connected domain: Find the pair of 
functions f (5) and g (5) from P by means of the boundary condition 

f (8 f 2, (8 g) = h (E) 
(10) 

where 2, (E) andh,Ji) g iven on L are Hiilder continuous, and v (E) does not vanish any- 
where. First establishing that every solution (10 ) from p is also Hijlder continuous on 
L under these conditions, the author of (5 ) reduces (10 j lo an equivalent system of 

singular integral equations of normal type by representing f (<): and g (5). by Cauchy 
type integrals with real densities. 

The adjoint system hence turns out to be related to the conjugate problem 
(S is the arclength of the contour ) 

fl (8 + u-1(E) (~)“ix) = 0 

(11) 

The difference between the numbers 1 and Z1 of the solutions of the homogeneous 
problems (10) and (11)) which are linearly independent over the field of real numbers, 
equals %a- 2(n - l),where m IS the indev of the function v (E) on L . For a plane 
with n hole.s,(n - 1)should be replaced by n, if a decrease at infinity is required of 

f (c)and g (5) 
According to what has been proved H (5) and 0’ ( 5) in (9) possess first deri - 

vatives whose bcnmdary values on L are Hdlder continuous. Hence using the I. N , 
Vekua [4] integral representation for H and o we obtain that the conjugate prob- 
lem to (9) has the form 

P (8 + G1($)2gg = 0 
(12) 

where I and 11’ are the numbers of linearly independent solutions of the homo - 
geneous problems (9) and (12) connected by the relationship I,’ - 1’ = 2n. 
The identity and condition _ . 

(g) = (?%)I, EEL; &#O, Imh,=O (13) 

were used in deducing (12 ) . 
When v(E) = As on Lk the problems (11) and (12) coincide, hence, 

I,’ = I,,.meaning 1’ = I, but the homogeneous problem (10) has only a zero sol - 

ution. In fact, it follows from (1) that Re (if (E) g (F;)) = 0 on L from which 
f (5) = g (5) = 0 in F. Therefore, I’ is also zero. 

Let us integrate (9) with respect to 

( 14) 

(dk are constants of integration ). For a zero right side, the problem (14) has only a 
zero solution in the class of holomorphic functions together with Htilder-continuous 
first derivatives on L, as has been proved: hence, all the dk = 0. 

To seek@ (ckn fact, let us assume by using the D. I. Sherman method [I:? 
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H (5) = .d-- s u cg, 
2ni Lit--E 

dg = \ u (E) d3’ 

LR 

(JJ(5) = & t \ 
k=l Lk 
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( 15) 

The functions H (Q and 0 (<) will possess the required boundary properties if it 

is assumed that the functionu’ (E)given on L is continuous and u (E) is integrablel41. 
Substituting (15 ) into (14) and using Sokhotskii formula, we obtain 

Equation (16 ) is regular by construction [S 1. It is always solvableuniquely i. e. , the 
corresponding homogenepus equation is not solvable. 

In fact, let’ uo (8 denote the solution of the homogeneous equation. The 
functions HO (5) and a0 (5) constructed by using (15 ) and the solution will satisfy 
the boundary condition (10 ) with zero right side, and therefore, are zero in F. There 

hence results that uo (5) and u. (E) / 1,, 
-- 

meaning,p, (E) also, are boundary values of 
functions holomorphic in n simply-connected domains bounded by circles &, hence 

UO (E) reduces to a constant on each contour. Finally, using the equality dk” = 9 we 

find that these constants are also zero. 
The solution (16) by least squares, by means of the correspondingly compli - 

cated formulas in [l] , was carried out numerically. The solid lines in Fig. 2 show 
the system of contours of equal strengths for the following data: 

n = 4, a, = -a, = 1.1, a2 = -a4 = i 

rk = 0.7, k= 1, . . . . ‘i 

ox ~= 
% 

“=f==() ‘t =() t0 

p1 = pa = -1, pz 1 p4 = 1 

If the geometric properties of the domain S are such that it is mapped uni- 
valently on a plane with slits along one line, then the problem sometimes admits of 

solution by quadrature% 
Let us consider an example. Let a plane with three holes be mapped on a plane 

with slits along the real axis (---YZ, -vi), (--1,t) and (vi, VA, 1 < vi < v, (symmetric 

case). L,& lo denote the middle slit and Ii, 1, the outer slits. We assume that the 
only nonzero component on 10 is or = 1’ while + = -1 on I,,,. Then oa = 

- or, LO = -1, Al,, = 1. The functions O’ (5) and H’ (5) have power-law singu - 
larities in the order of, 1/z at the ends of the slits, and are bounded in the rest of the 

plane [Z]. On the real axis aE / ag = 1. By separating real and imaginary parts the 

boundary value problem (9 ) is reduced to two mixed problems of the theory of holo - 

morphic functions [4] (the variable 4 is real) 



932 
S. B. Vigdergauz 

~ 

. 

\ 
\ 

whose solution in the mentioned class is found by the formulas of M. V. Keldysh- 

L. I, Sedov [4] with the asymptotic taken into account 

Integrating. we obtain the equation of the contours in Cartesian coordinates [7 ] (for 
:r > 0 and Y > 0). 

For the central contour 

cp = arcsi* -2, />. = 2.L 
VI 

,, -_: G 
V$ ’ y-r/~-_ d, so 

For the right side contour 

Here F, E are elliptic integrals (K, E are the complete 
of the first and second kinds. 

elliptic integrals ) 
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By virtue of symmetry, d, is determined from the condition :y = 0 for 5 = Y%_ 
We obtain 

d, = vaaE (k$ I K (Is,) 

Analogous computations for two holes under a constant load are performed in 
[2]. The dashed lines in Fig. 2 present the contour shapes for Yr = i. i, v2 = 2.1. 
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